

CEQA SCOPING

Organochlorine Compounds TMDLs

Upper and Lower Newport Bay San Diego Creek

Kathy L. Rose, Ph.D.
Environmental Scientist
SARWQCB
August 9, 2006

Purpose of the CEQA Scoping Meeting

- To provide an update on the proposed OCs TMDLs;
- To obtain comments on:
 - A range of alternatives
 - Significant or potentially significant environmental impacts of the project
 - Measures to mitigate any significant environmental impacts of this project
 - BMPs presently being implemented and their costs

Meeting Agenda

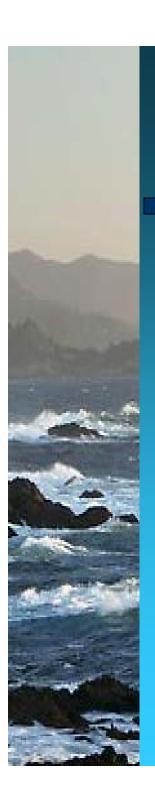
- Regulatory requirements & process
- TMDL summary
- Scoping of alternatives, significant impacts and mitigation
- Next steps

Regulatory Requirements

- Federal Clean Water Act
- Porter Cologne Water Quality Control Act
- California Environmental Quality Act (CEQA)

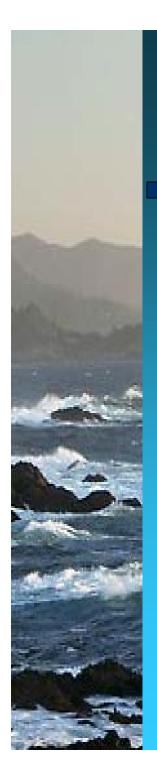
Federal Clean Water Act

- Section 303(d):
 - Identify waters not meeting standards
 - For impaired waters, establish Total
 Maximum Daily Loads (TMDL)
 designed to attain standards


Porter-Cologne Water Quality Control Act

- Regional Water Quality Control
 Boards are responsible for protecting surface and ground water quality
- Requires Regional Boards to establish Basin Plans:
 - Santa Ana River Basin Water Quality
 Control Plan (the "Basin Plan") (1995)

Basin Plan


- Water Quality Standards
 - Beneficial uses
 - Numeric and narrative water quality objectives
 - Antidegradation policy
- Implementation plan
- Monitoring program

Water Quality Objectives for Toxic Substances

- (1) Numeric objectives CTR
- (2) Narrative objectives
 - a) Toxic substances shall not be discharged at levels that will bioaccumulate in aquatic resources to levels which are harmful to human health; and
 - The concentration of toxic substances in the water column, sediment, or biota shall not adversely affect beneficial uses.

					ı	3en	efic	cial	Use	•										
Water Body	M U N	A G R	I N D	P R O C	G W R	N A V	P O W	R E C 1	R E C 2	C O M M	W A R M	L W R M	C O L D	B I O L	W I L D	R A R E	S P W N	M A R	S H E L	E S T
Lower Bay						X		X	X	X					X	X	X	X	X	
Upper Bay	+							X	X	X				X	X	X	X	X	X	X
San Diego Creek Reach 1	+							X	X		X				X					
San Diego Creek Reach 2	+				ı			ı	ı		ı				I					
Other tributaries					1			1	1		1				1					

Basin Plan Amendment

- TMDLs incorporated into the Basin Plan through Basin Plan Amendment
 - Requires compliance with CEQA
 - State Board's water quality planning process has been certified as "functionally equivalent" to the requirements of CEQA
 - Exempt from requirement to prepare an Environmental Impact Report or Negative Declaration and Initial Study (CCR Title 14, §15251(g))

CEQA (cont'd)

- Substitute environmental documents required for basin planning actions are:
 - A written technical report
 - A draft of the Basin Plan Amendment
 - A completed Environmental Checklist

CEQA Checklist

Evaluate possible environmental impacts on the following categories:

- Aesthetics
- Agriculture
- Air quality
- Biological resources
- Cultural resources
- Geology & soils
- Hazardous materials
- Hydrology & water quality

- Land use & planning
- Mineral resources
- Noise
- Population & housing
- Public services
- Recreation
- Transportation
- Utilities & Sewer services

CEQA (cont'd)

- Economic Considerations
 - Must consider reasonably foreseeable methods of compliance
 - Must provide an estimate for the cost of those compliance measures
 - Must identify potential sources of funding
- External Scientific Peer Review

Basin Plan Amendment Approval Process

- Regional Water Quality Control Board
- State Water Resources Control Board
- Office of Administrative Law
- U.S. Environmental Protection Agency

TMDL History

- 303(d) listings in early 1990s
- Consent decree 1997
- SARWQCB Final Problem Statement
 2000
- Technical TMDLs promulgated by USEPA - 2002

Where are we in the process?

Milestone	Schedule
CEQA Scoping Meetings	June 22, 2005 August 9, 2006
TMDL Technical Report	August 2006
External Peer Review	August-October 2006
Completion of Draft BPA Staff Report	September 2006
Board Workshop	October 13, 2006
Public comment period	October-November, 2006
Board Adoption Hearing	January 2007

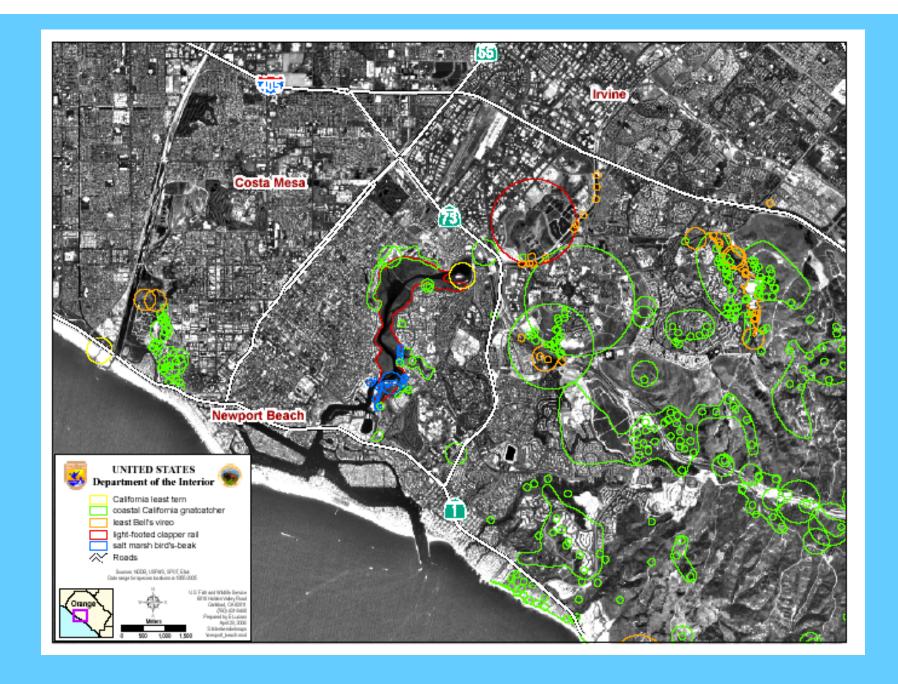
What We've Been Doing

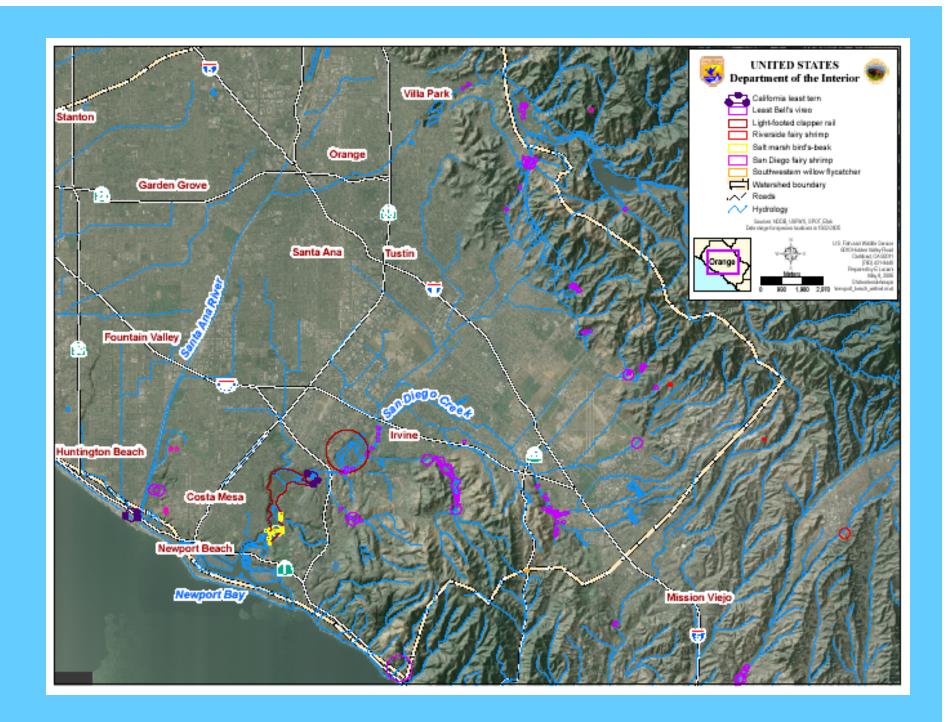
- Impairment reevaluated following adoption of State Listing Policy in 2004
- Waterbody-pollutant combinations requiring TMDLs changed
- Other modifications to USEPA technical TMDLs
 - Loading capacities tied to sediment TMDL allowable loads

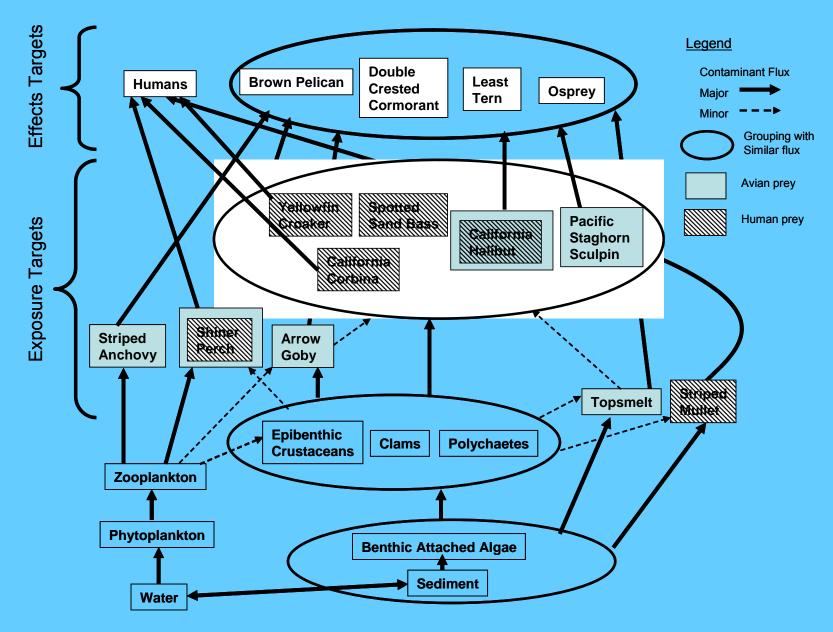
- Technical Advisory Committee formed and have provided input
 - Representatives from OEHHA, USFWS, SFEI, SCCWRP, academia, private consulting
- We have met several times with stakeholders on issues of concern

Why the Concern about OCs?

- Adverse toxic effects to humans, aquatic life and wildlife due to direct exposure
- Adverse toxic effects to humans, aquatic life and wildlife due to indirect effects related to bioaccumulation and biomagnification


Biomagnification





All OCs pollutants bioaccumulate in plants and fatty tissues of fish, birds, and mammals. DDT linked to reproductive failure in bald eagle; also adverse effects to peregrine falcon, brown pelican and osprey

Conceptual Food Web Model - SFEI Case Study

Impairment Assessment

- Weight of evidence approach
 - Water chemistry
 - Fish tissue chemistry
 - Sediment quality (triad approach)
 - Sediment chemistry
 - Sediment and porewater toxicity
 - Benthic community response
 - Effects due to food web biomagnification

Minimum number of exceedances for impairment finding

Null Hypothesis (H_o): Actual exceedance proportion \leq 3 percent. Alternate Hypothesis (H_a): Actual exceedance proportion > 18 percent. The minimum effect size is 15 percent.

Sample Size	List if the number of exceedances equals or is greater than
2-24	2*
25-36	3
37-47	4
48-59	5
60-71	6
72-82	7
83-94	8
95-106	9
107-117	10
118-129	11

^{*}Application of the binomial test requires a minimum sample size of 16. The number of exceedances required using the binomial test at a sample size of 16 is extended to smaller sample sizes. For sample sizes greater than 129, the minimum number of measured exceedances is established where α and $\beta \le 0.2$ and where $|\alpha - \beta|$ is minimized.

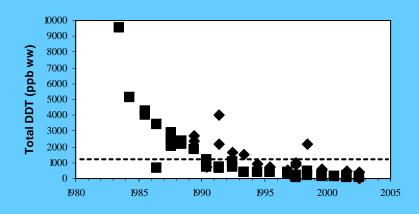
 $\alpha\text{=}$ Excel® Function BINOMDIST (n-k, n, 1-0.03, TRUE)

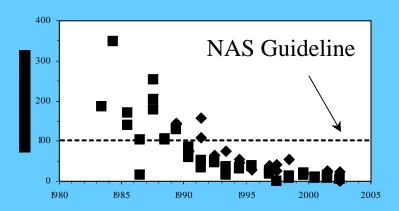
 β =Excel® Function BINOMDIST (k-1, n, 0.18, TRUE)

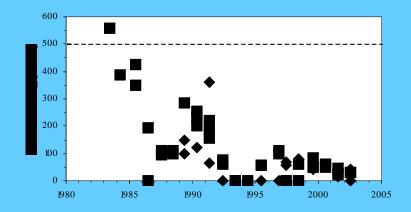
where n = number of samples,

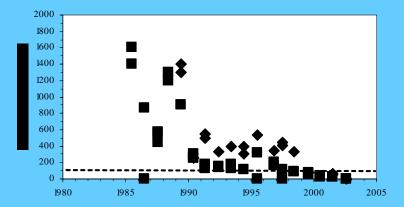
k = minimum number of measured exceedances to place a water on the section 303(d) list,

0.03 = acceptable exceedance proportion; and

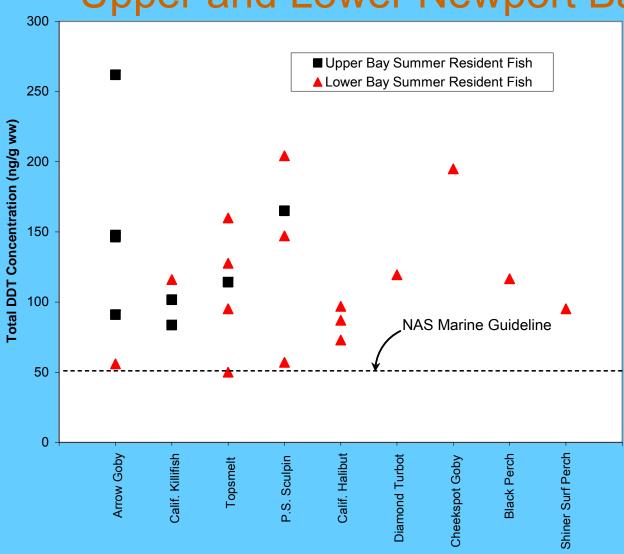

0.18 = unacceptable exceedance proportion

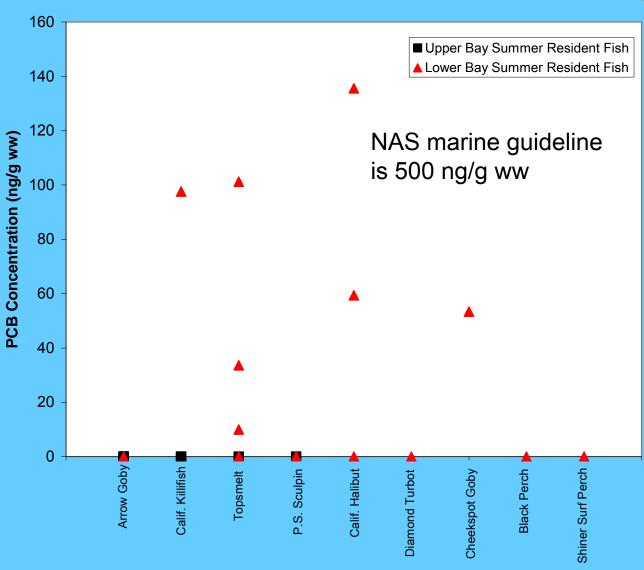


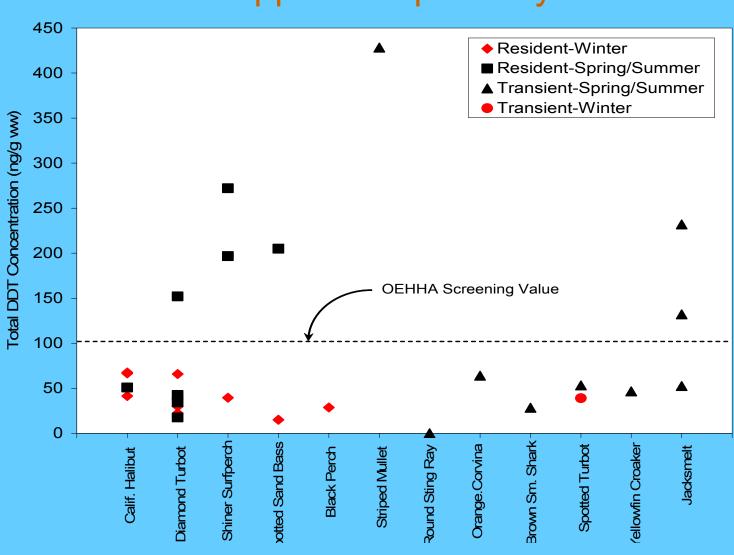

Data Sources

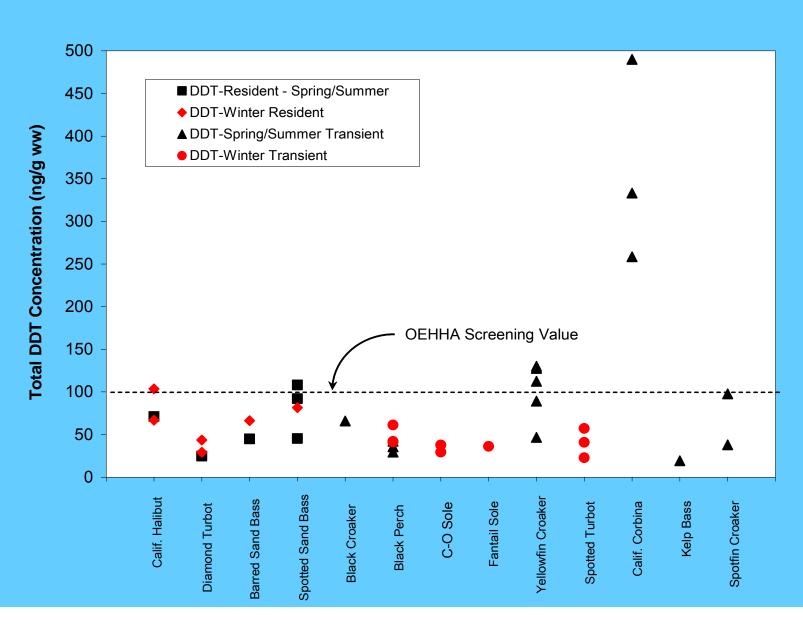

- State Mussel Watch Program (SMW)
- Toxic Substances Monitoring Program (TSMP)
- Bay Protection & Toxic Cleanup Program (BPTCP)
- Coastal Fish Contamination Program (OEHHA)
- Orange County RDMD
- Irvine Ranch Water District (IRWD)
- SCCWRP Sediment Toxicity Study (2004)
- SCCWRP Fish Bioaccumulation Study (2004)
- SCCWRP Clapper Rail Egg Study (2005)
- BIGHT '98 and '03
- Resource Management Associates (RMA) modeling reports

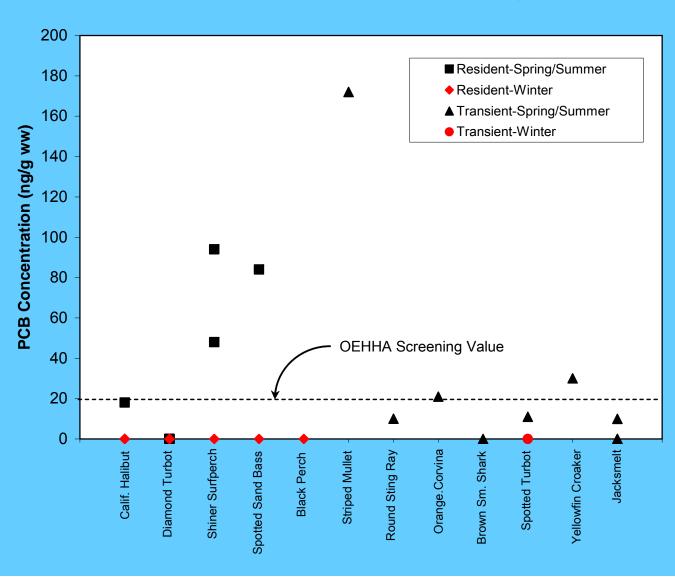
OCs in Red Shiner Whole Fish Tissue – San Diego Creek

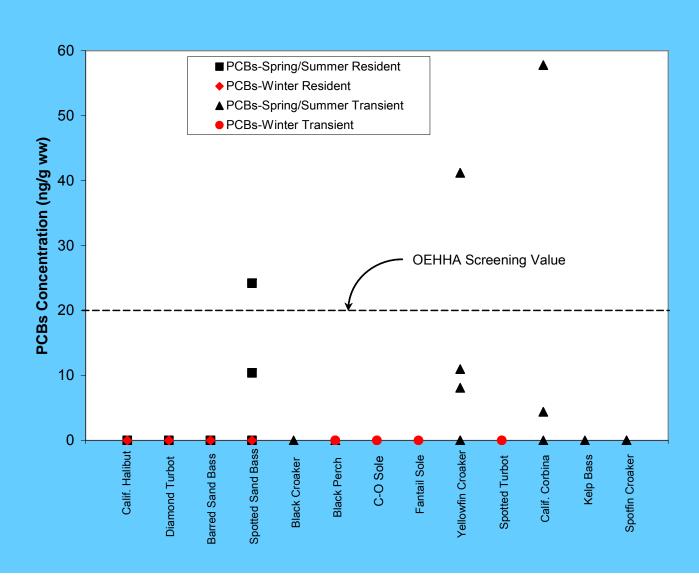





DDT in Whole Fish Tissue Upper and Lower Newport Bay


PCBs in Whole Fish Tissue Upper and Lower Newport Bay


DDT in Sport Fish Fillets in Upper Newport Bay


DDT in Sport Fish Fillets in Lower Newport Bay

PCBs in Sport Fish Fillets in Upper Newport Bay

PCBs in Sport Fish Fillets in Lower Newport Bay

TMDL Constituent Comparison

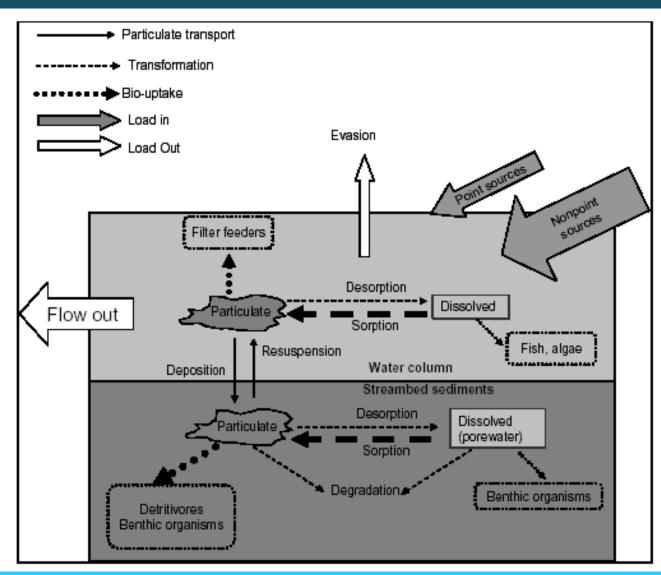
	USEPA*	SARWQCB** Staff
San Diego Creek	Chlordane, Dieldrin, DDT, PCBs, Toxaphene	Chlordane [‡] , DDT [‡] , PCBs [‡] , Toxaphene
Upper Newport Bay	Chlordane, DDT, PCBs	Chlordane, DDT, PCBs
Lower Newport Bay	Chlordane, Dieldrin, DDT, PCBs	Chlordane, DDT, PCBs

^{*} Technical TMDLs include 12 waterbody-pollutant combinations.

^{**} Technical TMDLs include 10 waterbody-pollutant combinations.

[‡] TMDLs are being developed because SD Creek is primary source to Newport Bay for OCs

What is a TMDL?


- Total Maximum Daily Load: The maximum amount of a pollutant that can a waterbody can receive and still attain water quality standards (i.e., meet applicable water quality objectives and support all beneficial uses)
- It is an interpretation of narrative water quality objectives
- TMDL = WLA + LA + MOS

TMDL Elements

- Problem Statement
- Numeric Targets
- Source Analysis
- Loading Capacity/Linkage Analysis
- TMDL and Allocations
- Seasonal Variation/Critical Conditions
- Margin of Safety
- Implementation Plan

System Complexity

Numeric Targets

- TMDL must identify endpoints in sediment, water column or tissue that equate to attainment of water quality standards
- Set to be protective of most sensitive beneficial use
- Newport Bay supports 7 federally listed bird species; two endangered plant species; 78 species of fish, some of which are caught and consumed by people

Numeric Targets (cont'd)

- Sediment targets are primary targets in the TMDLs because:
 - OC pollutants directly associated with fine sediment
 - OC pollutants primarily transported via adherence to particulates
 - Limited water column data are available
 - Attainment of sediment targets will result in attainment of water column criteria (CTR) and tissue screening values (OEHHA)

TMDL Targets

Sediment Targets ¹ ; units are μg/kg dry weight (TELs)				
	Total DDT	Chlordane	Total PCBs	Toxaphene
San Diego Creek and tributaries	6.98	4.5	4.1	0.1
Upper & Lower Newport Bay	3.89	2.26	21.5	
Fish Tissue Targets fo μg/kg wet weight			łealth²; υ	inits are
San Diego Creek and tributaries	100	30	20	30
Upper & Lower Newport Bay	100	30	20	

TMDL Targets

Fish Tissue Targets for Protection of Aquatic Life and Wildlife³; units are μg/kg wet weight (NAS Guidelines)

	DDT	Chlordane	PCBs	Toxaphene
San Diego Creek and tributaries	1000	100	500	100
Upper & Lower Newport Bay	50	50	500	

Water Column Targets = CTR Values

TMDL Loads

San Diego Creek

Constituent	Loading Capacity	Existing Load	Reduction Needed
Total DDT	396	5223	4827
Chlordane	255	552	297
Toxaphene	6	536	530
Total PCBs	1933	256	N/A

Units are grams per year.

TMDL Loads

Upper Newport Bay

Constituent	Loading Capacity	Existing Load	TMDL	Needed Reduction
Total DDT	160	2318	160	2158
Chlordane	93	455	93	362
Total PCBs	884	92	92	N/A

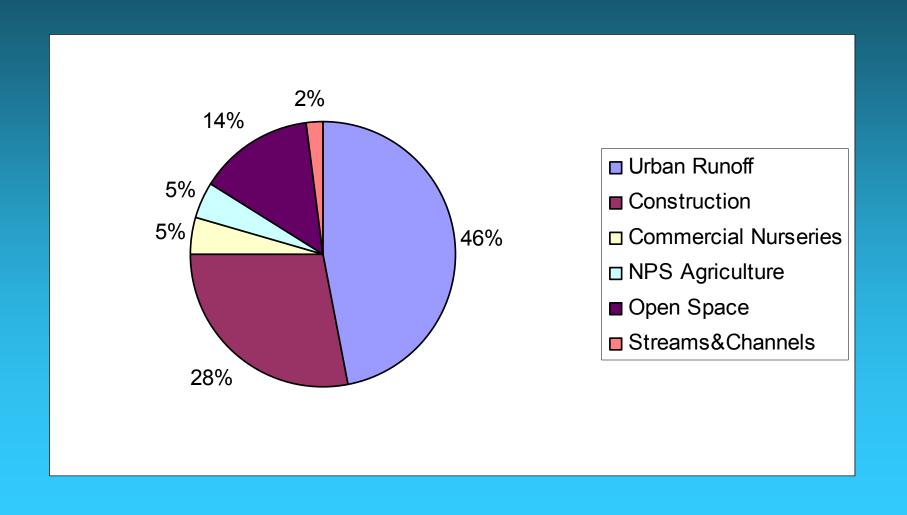
Units are grams per year.

TMDL Loads

Lower Newport Bay

Constituent	Loading Capacity	Existing Load	TMDL	Needed Reduction
Total DDT	59	656	59	597
Chlordane	34	36	34	2
Total PCBs	326	241	241	N/A

Units are grams per year.


TMDL Allocations

- Based on 2002 Land Use Areas and normalized to relative source ranking
 - (1)Agriculture
 - (2) Construction
 - (3) Channels and Streams
 - (4) Open Space
 - (5) Urban

TMDLs and Allocations

- TMDL = WLA + LA + MOS
 - MOS Explicit 10%
 - WLA = Point Source Allocations (all to MS4)
 - Urban Runoff (47%)
 - Commercial Nurseries w/ WDRs (4.5%)
 - Construction (28%)
 - LA = Non-point Source Allocations
 - NPS Agriculture (4.5%)
 - Open Space (14%)
 - · Channels and Streams (2%)

TMDL Allocations


- Source control activities to reduce/eliminate any active sources of OC pesticides and PCBs
 - Assess remaining "reservoir" of OCs in undeveloped lands in the watershed;
 - Estimate potential for pollutant discharges to receiving waters versus recirculation of existing contaminated bed sediments

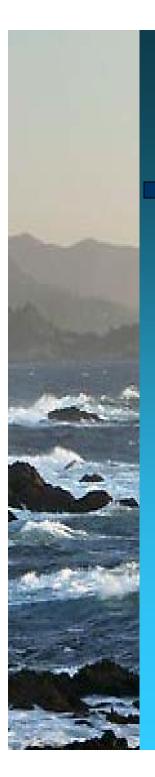
- Implement and evaluate agricultural best management practices
 - Develop Waiver of WDRs for NPS agriculture
- Implement and evaluate construction best management practices
 - Sampling and analysis of construction discharges containing potentially-contaminated soils

- MS4 Urban WLA
 - Permit will be modified to incorporate WLA's upon renewal
 - Encompasses developed urban areas as well as construction activities and agriculture point sources that can potentially discharge to the MS4
 - Latest revision to MS4 permit resulted in greater local oversight of new development and redevelopment; permit required the MS4 permittee and copermittees to:
 - Review/revise local plans, policies and ordinances
 - Conduct inspections of construction sites and nurseries
 - Conduct study of erosion control BMPs and formulate a "county-preferred" list

- MS4 Requirements (continued)
 - Evaluate whether current strategies are adequate to meet WLAs
 - Identify Construction BMPs and associated pollutant control effectiveness that demonstrate the WLAs will be attained
 - Submit a WLA compliance plan and schedule that demonstrate how the WLA will be implemented

MS4 Requirements (continued)

- Ensure developers made aware of TMDL compliance issues early in planning process (e.g., Conditions of Approval). Notification to developers to include:
 - Where applicable, the need to sample for nonvisible pollutants in construction site discharges (i.e., OCs in storm water runoff from sites previously in agricultural land use) per requirements of existing storm water permit for construction activities



- MS4 Requirements (cont'd)
 - Requirement for SWPPP to provide discussion of how selected BMPs and their implementation will ensure the MS4 will achieve WLAs for the OCs TMDLs

MS4 Requirements (continued)

- Monitoring
 - Develop and implement applicable toxics monitoring elements into NPDES water quality monitoring program
 - Continuing monitoring activities to measure OCs loads within the watershed
 - Document trends (especially fish tissue concentrations), potential hot spots in the creek and/or bay to be remediated, areas/sources that need additional control measures

- Monitored Natural Recovery
 - Lines of evidence to be considered (Magar and Wenning, 2006. Integ. Environ. Assess. Manage. 2:66-74)
 - Documentation of source control
 - Evidence of contaminant burial and reduction of surface sediment concentrations
 - Measurement of surface sediment mixing to estimate active benthic layer

- Natural Recovery (cont'd)
 - Measurement of sediment stability to assess risk of contaminant resuspension
 - Evidence of contaminant transformation and risk attenuation.
 - Modeling of long-term recovery, including surface water, sediment and biota.
 - Monitoring ecological recovery and long-term risk reduction
 - Knowledge of future site use and institutional controls (e.g., dredging).

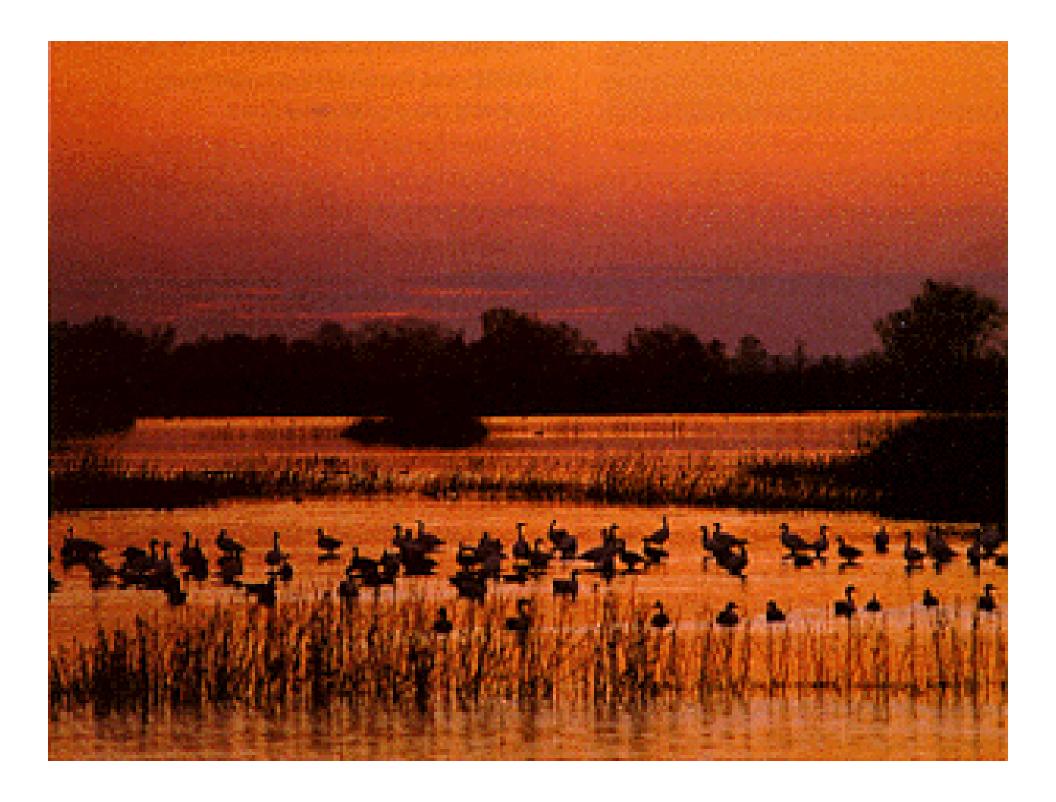
- Monitoring/research studies
 - County of Orange, PRISM grant (\$188,254)
 - Measure existing loads of OCs
 - SCCWRP, PRISM grant (\$185,155)
 - Source analysis
 - Measurement of air deposition
 - SFEI, Food Web model and BSAFs
 - Part of work of Sediment Quality Objectives Task Force
 - SCCWRP, Fish Food Web Analysis (\$253,532)
 - · Predator/prey evaluation
 - RMA Sediment transport model

Special Studies Needed

- Assess and quantify sources from open space
- Assess and quantify sources from channel/stream erosion
- Evaluate risk to aquatic life and wildlife in San Diego Creek and tributaries due to OCs
- Identify cause of sediment toxicity in Newport Bay and San Diego Creek

- Study results may lead to development of site-specific sediment quality objectives and refinement of TMDL targets
 - Identify most sensitive species
 - Evaluate food web structure for that species
 - Determine BSAFs/BAFs that will lead to identification of protective sediment target
 - Performed in whole or in part through contract or TAC
 - Monitoring results may lead to TMDL revisions and/or de-listing for certain of the OCs constituents in the next phase of the TMDL

- Implementation & compliance tied to sediment TMDLs
 - Revisions to the sediment TMDLs may trigger revisions to the OCs TMDLs
 - Revisions to sediment TMDLs anticipated in 2007


- Compliance schedule
 - Tied to sediment TMDLs compliance
 - 10-year running average (1999-2009)
 - Reevaluate in next listing cycle or triennial review

Contact

- We encourage your input and issues to consider with respect to CEQA
- Send comments to:

Kathy Rose
Santa Ana Regional Water Quality Control
Board
3737 Main Street, Suite 500
Riverside, CA 92507
krose@waterboards.ca.gov
(951) 321-4585

